二元函数可微的充分条件和必要条件(二元函数可微的充要条件判定)

 2023-08-14  阅读 454  评论 0

摘要:本文由麻布岗信息网整理发布,希望大家能够喜欢   二元函数可微的充要条件公式是若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。  二元函数可微性:  定义:  设函数z=f(x,y)在点

  本文由麻布岗信息网整理发布,希望大家能够喜欢

  二元函数可微的充要条件公式是若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

  二元函数可微性:

  定义:

  设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

  △z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

  可微性的几何意义:

  可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微。

  这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。

麻布岗信息网(www.517338.com)为您分享超实用的生活经验,美食,旅游,教育,历史,游戏,娱乐,数码等知识

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

原文链接:https://www.517338.com/a/jiaoyu/10404.html

发表评论:

管理员

  • 内容332661
  • 积分0
  • 金币0
关于我们
麻布岗信息网(www.517338.com)综合在线信息,汇聚城市生活,美食,购物,旅游,房产,交通,家居,财经,教育,健康,娱乐,历史,汽车,生活消费门户网站
联系方式
电话:13524672021
地址:
Email:773537036@qq.com
注册登录
注册帐号
登录帐号

Copyright © 2022 麻布岗信息网 Inc. 【测试站】 保留所有权利。 Powered by www.517338.com

陕ICP备2022013085号

  • 我要关灯
    我要开灯
  • 客户电话
    773537036

    工作时间:8:00-18:00

    客服电话

    13524672021

    电子邮件

    773537036@qq.com

  • 官方微信

    扫码二维码

    获取最新动态

  • 返回顶部