芝诺提出的悖论有哪些(与芝诺悖论相关的悖论)

 2023-08-14  阅读 195  评论 0

摘要:本文由麻布岗信息网整理发布,希望大家能够喜欢   芝诺(zenon,鼎盛期约在公元前468年)是巴门尼德的学生。他针对伊奥尼亚派的变化本原观,提出否认运动可能性的四个著名悖论。1、二分法悖论。2、阿基里斯悖论。3、飞矢不动。4、游行队伍悖论。  1、二分法悖论  一个人在到达目的地之前,要先走完路程的1/

  本文由麻布岗信息网整理发布,希望大家能够喜欢

  芝诺(zenon,鼎盛期约在公元前468年)是巴门尼德的学生。他针对伊奥尼亚派的变化本原观,提出否认运动可能性的四个著名悖论。1、二分法悖论。2、阿基里斯悖论。3、飞矢不动。4、游行队伍悖论。

  1、二分法悖论

  一个人在到达目的地之前,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2。按照这个要求可以无限循环的进行下去。因此有两种情况:①这个人根本没有出发;②只要他出发了,就永远到不了终点。(尽管离终点越来越近)

  2、阿基里斯悖论

  其实,这个悖论就是指这个有趣的故事——阿基里斯与乌龟赛跑。阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟10倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。

  3、飞矢不动

  “飞矢不动”中的“矢”指的是弓箭中的箭。正常的射箭,任何人都知道,只要箭离了弦,就能飞出去,经过一段空间运动后,到达另一个位置。

  然而,芝诺认为:如果我们截取“飞矢”的每一个瞬间,它在空中都是“静止”的。既然每一个瞬间都是静止的,所有的瞬间加起来也应该是静止的,因此,“飞矢”是“不动”的。

  4、游行队伍悖论

  假设在运动场上,在一瞬间(一个最小时间单位)里,相对于观众席A,队列B、C分别各向右和左移动一个距离单位。

  而此时,相对于B,C移动了两个距离单位。芝诺认为,既然队列可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,那么,半个时间单位就等于一个时间单位。

麻布岗信息网(www.517338.com)为您分享超实用的生活经验,美食,旅游,教育,历史,游戏,娱乐,数码等知识

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

原文链接:https://www.517338.com/a/jiaoyu/10276.html

发表评论:

管理员

  • 内容332661
  • 积分0
  • 金币0
关于我们
麻布岗信息网(www.517338.com)综合在线信息,汇聚城市生活,美食,购物,旅游,房产,交通,家居,财经,教育,健康,娱乐,历史,汽车,生活消费门户网站
联系方式
电话:13524672021
地址:
Email:773537036@qq.com
注册登录
注册帐号
登录帐号

Copyright © 2022 麻布岗信息网 Inc. 【测试站】 保留所有权利。 Powered by www.517338.com

陕ICP备2022013085号

  • 我要关灯
    我要开灯
  • 客户电话
    773537036

    工作时间:8:00-18:00

    客服电话

    13524672021

    电子邮件

    773537036@qq.com

  • 官方微信

    扫码二维码

    获取最新动态

  • 返回顶部