线性方程组的基础解系怎么确定(如何求线性方程组的基础解系和通解)

 2023-08-14  阅读 265  评论 0

摘要:本文由麻布岗信息网整理发布,希望大家能够喜欢   线性方程组的基础解系的求法是:Ax=0;如果A满秩,有唯一解,即零解;如果A不满秩,就有无数解,要求基础解系;求基础解系,比如A的秩是m,x是n维向量,就要选取n-m个向量作为自由变元;齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。基

  本文由麻布岗信息网整理发布,希望大家能够喜欢

  线性方程组的基础解系的求法是:Ax=0;如果A满秩,有唯一解,即零解;如果A不满秩,就有无数解,要求基础解系;求基础解系,比如A的秩是m,x是n维向量,就要选取n-m个向量作为自由变元;齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。

  如果n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

  设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r。

  对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

麻布岗信息网(www.517338.com)为您分享超实用的生活经验,美食,旅游,教育,历史,游戏,娱乐,数码等知识

免责声明:我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本文部分文字与图片资源来自于网络,转载此文是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们,情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

原文链接:http://www.517338.com/a/jiaoyu/7830.html

发表评论:

管理员

  • 内容332661
  • 积分0
  • 金币0
关于我们
麻布岗信息网(www.517338.com)综合在线信息,汇聚城市生活,美食,购物,旅游,房产,交通,家居,财经,教育,健康,娱乐,历史,汽车,生活消费门户网站
联系方式
电话:13524672021
地址:
Email:773537036@qq.com
注册登录
注册帐号
登录帐号

Copyright © 2022 麻布岗信息网 Inc. 【测试站】 保留所有权利。 Powered by www.517338.com

陕ICP备2022013085号

  • 我要关灯
    我要开灯
  • 客户电话
    773537036

    工作时间:8:00-18:00

    客服电话

    13524672021

    电子邮件

    773537036@qq.com

  • 官方微信

    扫码二维码

    获取最新动态

  • 返回顶部